
OpenStep Journal, Summer 1995 (Volume 1, Issue 2).
Copyright ã1995 by NeXT Computer, Inc. All Rights Reserved.

Realities of Portable Distributed Objects

Written by Brian Raymor and Randy Tidd

Although the design of the Distributed Objects and Portable Distributed
Objectsä
architectures is elegant and simple, creating working applications with them
can be complex.
A thorough understanding of Mach interprocess communication and the details
of distributed environments can dramatically improve a developer's ability to
use these powerful tools.
This is the second installment of a series of articles on developing real-world
distributed applications in the NEXTSTEPä operating environment.

(Note that sidebars and marginal notes in the printed journal are denoted here
by smaller type with    bars above and below the item.)

The ®rst article in our series focused on registering and connecting to servers.
We also reviewed how to ªrunº Distributed Object connections, but we didn't

discuss the DOEventLoop class that is speci®c to Portable Distributed Objects
(PDO). This article describes the DOEventLoop, both to quickly review running
connections and to demonstrate how it works in a non-NEXTSTEP environment.

The next step is to explore how clients and servers send and receive messages.
Again, we'll   
refer to the Mach IPC implementation to better comprehend the underlying
implications of communication between distributed applications. Also, the code
fragments are minimal, excluding ancillary details such as error or exception
handling for the purposes of clarity.

RUN, RUN, RUN, AS FAST AS YOU CAN
In our ®rst article, we wrote:

When a server registers its SERVER_NAME using a class method such as
registerRoot:withName:, a NXConnection instance is created and returned. To

allow the connection to receive and dispatch incoming messages (requests),
the server must ªrunº

the connection. This is accomplished using one of the variations on the run
method: run, runWithTimeout:, runFromAppKit, an runInNewThread.

For obvious reasons, runFromAppKit is not applicable in PDO applications.
Instead, the DOEventLoop class is included with PDO to emulate the main event
loop in the Application Kitä Application class. In this case, a connection is
registered with an instance of DOEventLoop.
When the DOEventLoop instance is ªrun,º it will receive and dispatch incoming
messages on

the connection.
Because it's common for applications to receive input from multiple sources,
DOEventLoop also de®nes methods to register object handlers for common
events, similar to the functions DPSAddPort() and DPSAddFD() in the Display
PostScriptâ (DPS) client library for NEXTSTEP.
The following fragment demonstrates how to register a connection with an event
loop:
DOEventLoop *eventLoop;
ServerClass *serverObject;
NXConnection *serverConnection;

serverObject = [[ServerClass alloc] init];
serverConnection = [NXConnection registerRoot:serverObject

withName:SERVER_NAME];

/*
 * register the connection with the event loop
 */
eventLoop = [DOEventLoop new];
[eventLoop addConnection:serverConnection];
[eventLoop run];

The DOEventLoop also permits applications to register objects that are noti®ed
when certain events occur, including incoming messages on a Mach port,
incoming data on a ®le descriptor, and timeout events.
When you use DOEventLoop, there's no need to use the NXPort class method
worryAboutPortInvalidation to create a new thread to listen for port deaths. This
function is implicitly performed by DOEventLoop. If the PDO platform supports

threads, then a separate thread is created for this purpose. In this case, the
senderIsInvalid: implementation must be thread-safe. If thread support is
unavailable, the port death noti®cations are dispatched from the same thread
running the DOEventLoop.
__

In the first article, we demonstrated how to increase the message queue length for the Mach
ports associated with the connection. This is not required in the PDO implementation. It offers
a pleasant (if inconsistent)
change in behavior by setting the port backlog for the Mach inPort managed by the connection
to PORT_BACKLOG_MAX.
__

DOEventLoop and File Descriptors
An object that conforms to the DOFileDescriptorHandling protocol is registered
with addFileDescriptor:handler:handlerData:. The method is similar to the
DPSAddFD() function in the DPS client library for NEXTSTEP. When data is
available to be read on the ®le descriptor, the registered object is sent the
dataOnFileDescriptor:handlerData: noti®cation. The object handler is
unregistered using the removeFileDescriptor: method.
In most cases, a ®le descriptor for a socket or pipe is registered with the event
loop. The following example creates a socket. The ®le descriptor for the socket is
registered with the event loop. The socket is connected to the daytime server
that implements the DARPA Daytime Protocol (RFC 867). This server returns the
current date and time and then closes the connection. When noti®ed, the object
handler unregisters from the event loop and prints the value returned from the
server.

#import <foundation/NSObject.h>
#import <remote/DOEventLoop.h>

@interface SocketHandler:NSObject<DOFileDescriptorHandling>
@end

@implementation SocketHandler
- (void)dataOnFileDescriptor:(int)fd handlerData:(void *)data
{

char c;
DOEventLoop *eventLoop = (DOEventLoop *)data;

[eventLoop removeFileDescriptor:fd];

/*
 * The daytime server returns a value similar to:
 * Wed Jun 21 14:15:20 1995\r\n
 */
 while ((read(fd, &c, 1))
 printf ("%c", c);
}
@end

void
main()
{

int fd;
struct sockaddr serverAddress;
SocketHandler *socketHandler;
DOEventLoop *eventLoop;

/*
 * The setup code for serverAddress has been removed to clarify the example.
 */

 fd = socket(AF_INET, SOCK_STREAM, 0);
 connect(fd, (struct sockaddr *) &serverAddress, sizeof(serverAddress));

/*
 * instantiate a file descriptor handler
 */
socketHandler = [[SocketHandler alloc] init];

/*
 * register the file descriptor and its object handler with the event loop
 */
eventLoop = [DOEventLoop new];
eventLoop addFileDescriptor:fd handler:socketHandler

handlerData:(void *)eventLoop];

[eventLoop run];
}

DOEventLoop and Mach Messages
An object that conforms to the DOMachMessageHandling protocol is registered
with the addPort:handler:handlerData: method. This method is similar to the
DPSAddPort() function in the DPS client library for NEXTSTEP. When a Mach
message arrives on the port, the registered object receives the
machMessageReceived:handlerData: noti®cation.The object handler is
unregistered using the removePort: method.
The following example allocates a Mach port. The port is registered with the
event loop. A Mach message is then de®ned and forwarded to the port. When
noti®ed, the object handler stops the event loop.
@interface MachMessageHandler:Object<DOMachMessageHandling>

@end

@implementation MachMessageHandler
- (void)machMessageReceived:(msg_header_t *)msg handlerData:(void *)data
{

DOEventLoop *eventLoop = (DOEventLoop *)data;
[eventLoop stop];

}
@end

void
main()
{

DOEventLoop *eventLoop;
MachMessageHandler *messageHandler;

port_t machPort;
msg_header_t msg;

/*
 * allocate a Mach port
 */

port_allocate(task_self(), &machPort);

/*
 * setup and send a Mach message
 */

bzero(&msg, sizeof(msg_header_t));
msg.msg_simple = TRUE;
msg.msg_size = sizeof(msg_header_t);
msg.msg_remote_port = machPort;
msg_send(&msg, MSG_OPTION_NONE, 0);

/*

 * instantiate a Mach Message Handler
 */
messageHandler = [[MachMessageHandler alloc] init];

/*
 * register the Mach port and its object handler with the event loop

 */
eventLoop = [DOEventLoop new];
[eventLoop addPort:machPort handler:messageHandler

handlerData:(void *)eventLoop];

[eventLoop run];
}

DOEventLoop and Timeout Handlers
An object that conforms to the DOTimeoutHandling protocol is registered with
the DOEventLoop using the addTimeoutEntry:handler:handlerData: method. Do
not confuse this method with the DPSAddTimedEntry() function in the DPS client
library for NEXTSTEP. A timed entry handler
is called repeatedly at the speci®ed time interval. A timeout handler is called
once when the
timer expires.
A timeout is similar to the UNIXâ alarm(3) function or setitimer(2) system call.
The difference
is that the UNIX operations result in a signal being delivered to the application. In
PDO, the registered object receives the timeoutOccurred:handlerData:
noti®cation.The handler is unregistered using the removeTimeoutEntry: method.
It's possible to implement timed entries with timeout entries. When noti®ed, the

object handler unregisters the previous timeout using the receipt. It then
registers a new timeout using the same DOTimeInterval value.
/*
 * Timeout in milliseconds
 */
const DOTimeInterval timeout = 5000;

@interface TimeoutHandler:Object<DOTimeoutHandling>
@end

@implementation TimeoutHandler
- (void)timeoutOccurred:(DOTimeoutReceipt)receipt handlerData:(void *)data;
{

DOEventLoop *eventLoop = (DOEventLoop *)data;
[eventLoop removeTimeoutEntry:receipt];
[eventLoop addTimeoutEntry:timeout handler:self handlerData:data];

}
@end

void
main()
{
 DOEventLoop *eventLoop;
 TimeoutHandler *timeoutHandler;

/*
 * Instantiate a timeout handler to be notified in 5000 milliseconds
 */

 timeoutHandler = [[TimeoutHandler alloc] init];

/*
 * register the timeout entry and its object handler with the event loop
 */

eventLoop = [DOEventLoop new];
[eventLoop addTimeoutEntry:timeout handler:timeoutHandler

handlerData:(void *)eventLoop];

 [eventLoop run];
}

In our first article, we reviewed some restrictions for senderIsInvalid: implementations.
There is an additional restriction for Application Kit-based applications. Their implementation
must not cause Display PostScript
client library functions to be executed, because the PostScript stream to the window server
could be
corrupted. The safest solutions are to use either the delayedFree: method in the Application
class or the perform:with:afterDelay:cancelPrevious: method in the Object class to
schedule the operations for a
later time.

PROXIES
An NXProxy instance is a local stand-in object for a remote object, where the
remote object exists in another process on the same machine or across the
network. An application never explicitly instantiates NXProxy objects. Proxies
(instances of NXProxy class) are created implicitly when an application receives a
reference to an object that does not exist in its address space.
To be completely accurate, one proxy is created implicitly on each side of the
connection. In the server application, where the object actually resides, the proxy
is known as the local proxy. In the remote application, the proxy is referred to as

the remote proxy. The (P)DO implementation uses the local proxy, which is
usually concealed from the developer. It is referenced here for completeness.
We'll use the term proxy to refer to the remote proxy in all further discussions.

For more information on local and remote proxies, see the ªSharing Objectsº section of the
Distributed Objects Introduction documentation found in
GeneralRef/06_DistributedObjects/IntroDistObjects.rtf.

Proxies are created whenever a remote connection is made. For example,
NXConnection's connectToName: and other similar methods return a proxy to the
root object for a server. Proxies are also created implicitly in (P)DO. If an object is
passed as an argument to a remote message, (P)DO will create a proxy once in
the remote application, unless the object is passed by copy. The same is true for
objects returned from remote messages. For example, if an application sends the
objectAt: message to a List proxy, then another proxy will be created for the
returned list element.
It is essential to minimize the number of proxies created and to minimize the
messaging traf®c sent over the proxies. This will be discussed in detail later.
NXProxy is a root class, so it inherits from neither Object nor NSObject. A proxy
implements a few methods for reference counting and other (P)DO-related
functions. If any other messages are sent to the proxy, the messages are
forwarded to the remote object that it represents.
Let's take a closer look at the forwarding of the message. The Objective-Câ run
time includes a mechanism by which an object can be noti®ed when it is sent a
message that it doesn't respond to. It sends the object a forward:: message with

the selector and its arguments. The default implementation of forward::
(implemented by Object and thus inherited by most NEXTSTEP classes) calls
doesNotRecognize:, which in turn calls error:, which prints the familiar ªdoes not
recognize selectorº message and raises an exception.

In the new Foundation classes, the method is forwardInvocation: instead of forward:: and
the arguments are expressed as an instance of the NSInvocation class. However, NSInvocation
is not public in the EOF 1.1 release and will not be public until NEXTSTEP 4.0, so until then the
forwardInvocation: mechanism for NSObject cannot be used.

The NXProxy class implements forward:: so unknown messages can be forwarded
to the remote object that it represents. First the proxy checks to see if the
message has been declared explicitly as part of its protocol (via
setProtocolForProxy:). If so, a local method signature is used and the proxy can
go ahead and send the message. If not, the ®rst time a message is encountered
for a given proxy, (P)DO will have to ask the object on the other side of the
connection for the method signature. This causes additional message traf®c, but
only the ®rst time the method is seen for each proxy (when the signature is
received, (P)DO caches it in the proxy, so it can be reused). If the remote object
does not respond to the selector, NX_unknownMethodException is raised at this
point. See the section below on ªUsing Protocols for Ef®ciencyº for further
details.
If the proxy determines that the remote object responds to the message, the
proxy packages the message selector and its arguments into a Mach message
and sends it to the remote process. The Mach implementation will be discussed
laterÐfor now, let's look closer at this encoding process.

Passing Objects across the Connection
(P)DO encodes each scalar argument (int, ¯oat, etc). The Network Message
Server resolves byte swapping and other architecture issues. Object arguments
are encoded by proxy or by copy. For objects sent by proxy, a proxy for the object
will be created in the remote application. For objects sent by copy, the methods
from the NXTransport protocol are sent to the object, which allows
the object to decide how it should be encoded across the connection.
The default is to send the object by proxy. To send an object by copy, the object
needs to implement the encodeRemotelyFor:freeAfterEncoding:isBycopy: method
appropriately. If this method unconditionally returns self, the object will always
be sent by copy. This method typically returns self (causing the object to be sent
by copy) only if the isBycopy ¯ag is YES; otherwise, a proxy (or other object) is
returned.

Which method you choose depends on the goals for your applications. These issues are
discussed in the Distributed Objects Introduction documentation in
GeneralRef/06_DistributedObjects/IntroDistObjects.rtf.

The application can specify the bycopy quali®er in a protocol that the proxy
conforms to. This will cause the isBycopy ¯ag to be YES; otherwise, it will be NO
(the default). In this manner the system designer can hint at how the object is
encoded, but the decision is ®nally made according to the implementation of the
object's encodeRemotelyFor:freeAfterEncoding:isBycopy: method.
For further details, review the ªbycopy Quali®erº section.

Several factors should be considered and balanced when deciding how to send
objects over the connection. Passing objects by proxy is convenient because it
allows two or more processes to access the same object. However, a message to
a remote object takes much longer than a message to a local object, it is much
less likely to arrive intact, and there are many more error conditions to account
for. Furthermore, proxies to objects can be created implicitly by the (P)DO
system, as discussed above.

For more information, see the ªDetermining the Object to Encodeº section of the Distributed
Objects Introduction documentation in GeneralRef/ 06_DistributedObjects/
IntroDistObjects.rtf.

Consider the case of a List object being passed by proxy from one application to
another. The receiving application can send this List proxy the objectAt: message
to obtain the objects that the List contains. However, the receiving application
will actually receive proxies to those objects that will be created implicitly by
(P)DO. In a single traversal of the List object, one proxy will be created for each
object that the List contains. Because each of these proxies carries a signi®cant
performance and complexity penalty, the application can quickly degenerate to
the point of
being unusable.
If the number of proxies is tightly controlled and the number of messages sent to
the proxy kept to a minimum, these drawbacks can be avoided and proxies can
be used to your advantage.
The other option is to pass objects by copy. With this approach, an instance of
the object will actually reside in both applications, so changes made to one

object will not be reflected in the other. If the object is large, the actual passing
of the object may take a considerable amount of time. For relatively small
objects that are unlikely to change (such as an NSString identi®er), passing it by
copy is usually preferable.
When a copy of an object is passed to another application, it cannot be
anonymous. The application that receives the object must have the class of the
object loaded in its address space. The implementations for the classes need to
be identical or strange errors can result. It's recommended that the class(es) be
placed in a library that's linked into both applications.

The NXTransport Protocol
The implementation and use of the NXTransport, NXEncoding, and NXDecoding
protocols are covered in detail in the Distributed Objects documentation. The
NXTransport protocol works in much the way the read: and write: methods work.
The most common mistake is the same as when using read: and write:, which is
encoding and decoding the parameters in a different order. For example, this:
- encodeUsing:(id <NXEncoding>)portal
{

[portal encodeData:&foo ofType:"i"];
[portal encodeData:&bar ofType:"i"];
return self;

}

- decodeUsing:(id <NXDecoding>)portal
{

self = [self init];
[portal decodeData:&bar ofType:"i"];
[portal decodeData:&foo ofType:"i"];

return self;
}

would not work, because the instance variables foo and bar are not encoded and
decoded in the same order. Worse, in this case the application would continue to
run, but the values of foo and bar would be switched after the encoding. It's
important to implement these routines carefully.
Note also the lack of a call to [super encodeUsing:] and [super decodeUsing:]. The
assumption is that this object's superclass is Object (or NSObject). In this case it
isn't necessary to call super's implementation of these methods.

Initialization After Decoding
When decoding an object, (P)DO allocates an instance of the class but does not
initialize it. It
then sends the object a decodeUsing: message so it can decode the parameters
that it encoded. Because the object is not initialized, the decodeUsing:
implementation should call the designated initializer for the object. Because the
designated initializer often assigns values to instance variables, you should call
the initializer at the top of the decodeUsing: implementation, and then decode
the values for the instance variables.
For example, the class Foo has instance variables name and value, with the
designated initializer init. Here is its interface declaration:
@interface Foo:Object
{

const char *name;
int value;

}
- init;
@end

The implementations of encodeUsing: and decodeUsing: could look like this:
- encodeUsing:(id <NXEncoding>)portal
{

[portal encodeData:name ofType:"*"];
[portal encodeData:&aValue ofType:"i"];
return self;

}

- decodeUsing:(id <NXDecoding>)portal
{
 char *aStr;

int aValue;

self = [self init]; // -init is our designated initializer
[portal decodeData:&aStr ofType:"*"];
[portal decodeData:&aValue ofType:"i"];

/* Assign the decoded values to the ivars */
[self setName:aStr];
[self setValue:aValue];

/* free the decoded string */
NX_FREE(aStr);
return self;

}

In the above example, a variable of type (const char *) was decoded in
decodeUsing:. The address of the variable &aStr was passed to

decodeData:ofType: to store the value. One may ask where the memory for that
string was allocated. The answer is that (P)DO allocated the memory with a call
to NX_MALLOC(), and the caller is responsible for freeing it with NX_FREE().

FOUNDATION CLASSES AND (P)DO
The NSObject class doesn't implement the NXTransport protocol, because
NSObject subclasses usually are not encoded over the connection with (P)DO.
The NSString, NSData, and NSNumber classes are exceptionsÐthese are always
encoded by copy over the wire. If you want to change this behavior, you need to
add a category to all mutable classes.

The few limitations are covered in the ªUsing Distributed Objects with the Enterprise Objects
Frameworkº documentation shipped with EOF 1.1, which can be found in
EnterpriseObjects/UsingDistributedObjects.rtf.

One approach to encoding other NSObject subclasses over the connection is to
implement an Object placeholder that will be encoded in the NSObject's place.
When the placeholder is decoded, it is freed and replaced with an object from the
appropriate NSObject subclass. This approach is fail-safe and will always work,
but it requires additional work beyond merely implementing the NXTransport
protocol. Either a separate class must be created for every NSObject subclass to
be encoded or a single class must be created that can encode different NSObject
subclasses.

This approach is detailed in NeXTanswer 1721, ªEncoding Foundation Classes with Distributed

Objects,º
which includes sample code for encoding NSArray and NSDictionary classes.

Another approach to encoding NSObject subclasses over the connection is to
simply implement the NXTransport protocol for the class as you would for an
Object subclass. This approach did not work in the EOF 1.0 releaseÐit caused an
exception during the encoding processÐbut it does work in the EOF 1.1 release.
This approach is discouraged because it can cause unusual problems and has not
been thoroughly tested. Nonetheless, we'll review it here.
To have the object encoded by copy,
encodeRemotelyFor:freeAfterEncoding:isBycopy: needs to be implemented such
that it returns self if the isBycopy ¯ag is YES; otherwise, it should return a proxy.
The creation of the proxy is normally handled by the superclass. Although
NSObject responds to this method, it is not declared in the public header ®le, so
a category on NSObject must be added for the interface declaration.
@interface NSObject (NXTransportExtensions)
- encodeRemotelyFor:(NXConnection *)connection

freeAfterEncoding:(BOOL *)flagp isBycopy:(BOOL)isBycopy;
@end

Then the object's implementation looks like this:
- encodeRemotelyFor:(NXConnection *)connection

freeAfterEncoding:(BOOL *)flagp isBycopy:(BOOL)isBycopy
{

if (isBycopy)
return self;

return [super encodeRemotelyFor:connection

freeAfterEncoding:flagp
isBycopy:isBycopy];

}

The encoded object is created by (P)DO but is not released, so it must be
released after it is decoded. A convenient solution is to send autorelease to the
object in its decodeUsing: implementation. The following code fragment
illustrates these points:
- encodeUsing:(id <NXEncoding>)portal
{

[portal encodeData:&foo ofType:"i"];
[portal encodeData:&bar ofType:"i"];
return self;

}

- decodeUsing:(id <NXDecoding>)portal
{

self = [[self init] autorelease]; // -init is our designated initializer
[portal decodeData:&foo ofType:"i"];
[portal decodeData:&bar ofType:"i"];
return self;

}

The problems encoding NSObject subclasses will be an issue only until NEXTSTEP
4.0 ships, when the new DO design will replace and supersede the existing
release. Some details can be obtained by reviewing the published OpenStepä

speci®cation. For now, implement these changes in such a way that they can be
easily backed out when the OpenStep interface becomes available.

Reference Counting

The NXConnection class implements a reference-counting strategy through the
NXReference protocol, which is implemented by the NXProxy, NXConnection, and
NXInvalidationNoti®er classes. When passing objects over the connection by
proxy, the object can be shared among many applications. When one application
is done with the object, it typically frees the object, but this is a bad idea if the
object is being used in other applications. This problem is handled by (P)DO's
reference-counting strategy, enabling each application to increase the reference
count when it needs the object and decrease the count when it's done with it, so
the object won't be freed until all outstanding references are removed.
However, the reference-counting scheme has bugs that still exist in NEXTSTEP
3.3. The reference count of the objects is incorrectly increased and decreased,
resulting in objects being leaked or prematurely freed. These problems are
prevalent and unfortunately there is no
known workaround.
Note that in the Foundation Kit implementation of the OpenStep speci®cation,
the autorelease strategy ®xes these problems and makes the process of
memory management over (P)DO much cleaner. This is not available with the
current NEXTSTEP 3.3 and PDO implementations, but it is something to look
forward to in NEXTSTEP 4.0.

The NXAutoreleaseConnection Class
This reference-counting strategy used by NXConnection differs from that of the
Foundation Kit classes, which use the NSAutoreleasePool class and NSObject's
retain, release, and autorelease methods (which are also part of the NSObject
protocol). These two strategies do not share any code, and the bugs present in
(P)DO's reference-counting strategy do not exist in Foundation KitÐthere are no

known reference-counting bugs in Foundation Kit.
Because the NXConnection class was written before Foundation Kit, it doesn't
know about Foundation's newer reference-counting strategy. This can lead to
memory leaks because NXConnection does not have an autorelease pool in its
run loop, so objects autoreleased during the implementation of (P)DO methods
won't actually be released in the absence of an
autorelease pool.
In the EOF 1.1 release, NXAutoreleaseConnection, a subclass of NXConnection,
provides autorelease pool support. NXAutoreleaseConnection provides no new
methods and should always be used in place of NXConnection.

The use of this class is covered in the ªEstablishing a Connectionº section of the ªUsing
Distributed Objects with the Enterprise Objects Frameworkº documentation in
EnterpriseObjects/UsingDistributedObjects.rtf.

NXAutoreleaseConnection can be used in both Application Kit and non-
Application Kit applications. For Application Kit processes, autorelease pool
support is normally handled by the EOApplication class (part of the EOF interface
layer), a subclass of Application that adds autorelease pool support. Calling
NXAutoreleaseConnection's runFromAppKit will just call its superclass's
(NXConnection) runFromAppKit implementation, and EOApplication's autorelease
pool support will be used. For non-Application Kit processes,
NXAutoreleaseConnection's run methods provide their own autorelease pool
support, so merely using that class in place of NXConnection will be suf®cient.
Generally, the bugs in (P)DO's reference-counting strategy result in part from the

lack of a systemwide reference-counting strategy that is used consistently by all
classes. The reference- counting scheme in Foundation Kit addresses this
problem by providing this capability to all objects in the system. The new DO
design that will be available in NEXTSTEP 4.0 will consistently use reference
counting, so all of these bugs should be eliminated.

For more information on how to add autorelease pool support to your application, see
NeXTanswer 1722,
ªUsing Autorelease Pools without EOF.º

REMOTE MESSAGES IN THE MACH ENVIRONMENT
In NXConnection, there are methods to set and return the timeout interval for
sending and receiving remote messages. The setOutTimeout: method speci®es
how long an application
will wait when sending remote messages. The setInTimeout: method speci®es
how long an application will wait when receiving messages. The
setDefaultTimeout: class method is de®ned for convenience. It sets both
inTimeout and outTimeout to the same value. These timeout intervals are used
with the timeout option for the Mach functions msg_send(), msg_receive(),
and msg_rpc().
After information from the remote message is incorporated into a Mach message,
it must be sent across the network connection using Mach IPC calls. The function
msg_send() is used to send oneway requests across the connection. It will block
the sender until either the message is enqueued on the destination Mach port or

the speci®ed timeout interval expires. If a timeout occurs, DO will note the error
and raise the NX_sendTimedOut exception.
After a message has been sent, the receiver can use the function msg_receive()
to dequeue the message from its Mach inPort. If no messages are pending, the
receiver will block until either a message is enqueued or the speci®ed timeout
interval expires. If a timeout occurs, DO will note the error and raise the
NX_receiveTimedOut exception.
The function msg_rpc() is used to send a synchronous message. Conceptually,
msg_rpc() performs a msg_send() followed by a msg_receive(). The sender will
block waiting for a response. This case is more complex. Assume that a client is
sending a synchronous message to a server. If the msg_send() succeeds, the
server will receive and process the request. If the processing exceeds
the timeout for the msg_receive(), then an NX_receiveTimedOut exception will be
raised in
the client. At some point, the server will return a response, which will then be
discarded because the client is no longer waiting because of the timeout
condition. A diagnostic message is printed to the console: ª[NXConnection run] -
tossing received reply msg.º
This behavior is acceptable if the client request does not change state in the
server. For example, a client can request a bank balance from an ATM multiple
times without ill effects. Other requests such as deposits or withdrawals change
the server state (account balance). It would be unfortunate if a withdrawal was
deducted multiple times from your account because the client timed out, did not
receive an acknowledgment, and then sent another request to the server. Of
course, we're also assuming that the server is a bit feeble-minded. Patience.

This has profound implications for distributed application designs. To avoid
differences between client and server state, the naive programmer often
speci®es in®nite timeouts (brute force) to simply prevent this scenario. The
application users then enter a trance state from watching a spinning cursor for
extended periods of time. This approach is reasonable for the prototype stage
but too coarse a solution for a production application. The real solution requires
transactions. Consider this carefully.
When using infinite timeouts for prototypes, there is an implementation detail to
note. When a connection is ªrunº in an event loop (runFromAppkit or run in
DOEventLoop), an invalidation noti®cation cannot be delivered under some
conditions.
Using in®nite timeouts, a client sends a synchronous message to the server. The
server receives the request but crashes while processing the message. The client
remains blocked on the msg_rpc(), because there is an in®nite timeout. The port
death noti®cation cannot be delivered until the next iteration through the event
loop; therefore, deadlock occurs.

Network Message Servers and Remote Messages
Mach messages can be transparently exchanged between processes on the
same machine (local) or between processes on different machines in a network
(remote). Remote messages are possible because of the Network Message
Server.
When a (P)DO client performs a name lookup for a server on a remote machine,
the local Network Message Server returns a network port that represents the
Mach port on the remote machine. If the client sends an Objective-C message to

the remote object, then (P)DO encodes the information into a Mach message that
is queued on the network port. The local Network Message Server receives the
Mach message and prepares it for network transmission to the Network Message
Server on the remote machine.
All (P)DO messages exchanged between Network Message Servers are treated
equally. A Network Message Server has no knowledge of the higher-level
semantics of request and reply. A Network Message Server actively creates a
connection on which to ªsendº (P)DO messages between a host pair when there
is a message to be sent and a connection does not already exist. An actively
created connection is never used to ªreceiveº a message, and a passively
created connection is never used to ªsendº a message. Either type of connection
is subject to deletion by the Network Message Servers as it sees ®t.
There are obvious performance implications when only one connection is sending
requests between two machines on the network. If a request is being sent,
additional requests must be queued or blocked until the current request is
complete. In (P)DO, this scenario will occur when large amounts of data are sent
as either arguments or return values. The Network Message Server will block
other requests until it completely writes the large data set across the connection.
This has the potential to disrupt private maintenance messages that are
exchanged between Network Message Servers. It might also cause other
connections to timeout.
Once the connection(s) are established, the request is written. The remote
Network Message Server reads and decodes the message. In addition, it
performs all required data conversion to ensure that the data is translated into
an appropriate representation for the hardware platform. It then queues the
message on the local Mach port. Finally, (P)DO dequeues the Mach message and

decodes it into the Objective-C message that is then forwarded to the
appropriate object.

Connection Management in the Network Message Server

Each Network Message Server follows some guidelines in connection
management, ensuring that open connections are maintained at a reasonable
level:
Steady state 32 connections
Maximum for outgoing messages 100

connections
Maximum for incoming messages 128

connections

The steady-state value is the number of connections that the Network Message
Server strives
to maintain. Every incoming and outgoing message includes a check on the
number of open connections. If this number exceeds the steady-state value, the
Network Message Server
attempts to close another connection. This attempt does not succeed if activity is
queued for the connection, but the feedback mechanism does rein in the number
of open connections over time.
When the Network Message Server needs to open a connection for an outgoing
message, it will do so unless the number of connections is already above the
outgoing limit. Likewise, when a remote host tries to open a connection to the
Network Message Server, it will accept the request and connect if the current
number of connections is not above the incoming limit.

NS-DO-NetMsgServ-1.eps ¬

In both cases, the Network Message Server will also attempt to close an old
connection when it opens the new one if the number of connections exceeds the
steady-state value. Thus, the two upper limits are safety valves that allow the
Network Message Server to open more connections than the steady-state value
in times of excess traf®c, but the number of connections will always shrink back
to the steady-state value when traf®c is reduced. In NEXTSTEP 3.3, connections
that are idle for 2.5 minutes are also closed.
Again, the performance implications are clear. Let's assume that each client
application runs on a separate machine in the network. In addition, each client
will be active on a constant basis. If the number of clients exceeds the maximum
number of available connections, then the Network Message Server on the
machine where the server is running will be frantically opening and closing
connections (thrashing) to meet the demand. Delays will result.
This scenario can be avoided through careful designs that de®ne an appropriate
client and server ratio based on prototypes.

DESIGNING DISTRIBUTED APPLICATION INTERFACES
Up to this point, we've offered templates for common client and server
operations such as registration and connection. The next phase is to de®ne the
characteristics of the requests (messages) that are sent to the server. Although
these are application-dependent, some guidelines can be recommended.
It's possible to write naive or devil-may-care distributed applications that do not

discern between local and remote messages. In theory, it should not matter
whether the object is local or remote:
char *hugeReport;
NX_MALLOC(hugeReport, char, HUGE_NUMBER);
// hugeReport is then initialized with a huge string (not shown)
[anObject sendReport:hugeReport];

Yet this fragment is neither robust nor ef®cient because distributed applications
offer an education in failure.

Taking Exception(s)
The fragment is not robust because exceptions will be raised if there are
communication problems or network delays. Messages to remote objects need to
be enclosed in an exception handler.
char *hugeReport;
NX_MALLOC(hugeReport, char, HUGE_NUMBER);
// hugeReport is then initialized with a huge string (not shown)
NX_DURING

[anObject sendReport:hugeReport];
NX_HANDLER

// Handle exception
NX_ENDHANDLER

Another option is to install a custom exception handler using
NXSetExceptionRaiser():
volatile void
exceptionRaiser(int code, const void *data1, const void *data2)
{

switch (code) {
// handle interesting exceptions
default:

// pass other exceptions to the next exception handler
NXDefaultExceptionRaiser(code,data1,data2);
break;

}
}

NXSetExceptionRaiser(exceptionRaiser);

But What Does It All Mean?

Exceptions are raised when (P)DO either cannot or should not determine the
appropriate policy
for handling an error condition. This design allows programs to implement
application-dependent behavior for exception handling.
Here's a brief explanation for the exceptions raised in (P)DO:
· NX_couldntSendException = 11001

If msg_send() or msg_rpc() fails and the returned error is not
SEND_INVALID_PORT,

SEND_TIMED_OUT, RCV_INVALID_PORT, or RCV_TIMED_OUT, then this default
exception is raised with the message ªCannot send.º When diagnostic

messages are enabled (see ªDebugging and Diagnostic Messagesº), the
message ª®nishEncoding: send/receive error <mach error number>:<mach
error string>º is printed to the console.
· NX_couldntReceiveException = 11002

If msg_receive() fails and the returned error is neither RCV_INVALID_PORT nor
RCV_TIMED_OUT, then this default exception is raised with the message

ªCould not receive.º When diagnostic messages are enabled (see the debugging
section), the message ªstartDecoding: receive error <mach error
number>:<mach error string>º is printed to

the console.
· NX_couldntDecodeArgumentsException = 11003

When a Mach message is received in the remote application, it decodes the
method parameters (arguments) that were encoded in the Mach message by the
sender. If errors occur during this process, an exception is returned as a
response. The exception is not raised in the remote application. When
diagnostics are enabled, the message ªdecodeMethodParamsFrom:

incompatible method params <argument types>, nargs <actual argument
count>, want <argument count>º is printed to the console. The local
application detects this case and then raises the exception with the message
ªexception during remote execution.º

This exception could be raised if you tried to send a bycopy object across a
connection to a server that didn't have its class implementation.
· NX_unknownMethodException = 11004

This exception is raised in two cases. In the local application, the forward::
method in NXProxy encodes and forwards Objective-C messages across the
connection as Mach messages to the related remote object. Before forwarding,
the implementation checks to see whether the remote object includes a method
signature (description) for the Objective-C message. If not, this exception is
raised with the message ªtarget does not implement method.º

In the remote application, the Mach message is received. The name for the
method to be dispatched is decoded. Then, the sel_getUid() function is executed
to return the unique

identi®er (selector) for the method name. If errors occur during this process,
an exception is returned as a response. The exception is not raised in the
remote application. When diagnostic messages are enabled (see the
debugging section), the warning ªhandleRequestOnPortal: received message
for <target> with unknown sel :<selector Name>º is printed to the console.

The local application detects this case and then raises the exception with the
message ªexception during remote execution.º
· NX_objectInaccessibleException = 11005

In the local application, the forward:: method in NXProxy encodes and forwards
Objective-C messages across the connection as Mach messages to the related
remote object. Before

forwarding, the implementation checks to see whether the connection is valid.
If not, this exception is raised.
· No exception is de®ned for code 11006

It was mysteriously skipped in the NXRemoteException enumeration. Imagine
our surprise.
· NX_objectNotAvailableException = 11007

This exception is raised in two cases. In the remote application, the Mach
message is received. If the local proxy (target) for the message is invalid (nil)
or cannot be located in internal tables, then an exception is returned as a
response. The exception is not raised

in the remote application. When diagnostic messages are enabled, the
warning ªhandleRequestOnPortal: id <target> not availableº is printed to the
console. The local application detects this case and then raises the exception
with the message ªexception

during remote execution.º

The exception is also raised with the message ªremote object not availableº
when a reference is being added to a proxy and its connection is invalid.
· NX_remoteInternalException = 11008

This exception is raised in three unusual cases. If a memory allocation fails
while encoding a message, the exception is raised with the message ªout of
memory.º The exception is also raised with the message ªbad wire typeº
when a reference is being added to a proxy and its connection is neither
remote nor invalid. Finally, if decoding a private version number fails,

the exception is raised with ªbad protocol version.º
· NX_multithreadedRecursionDeadlockException = 11009

This exception is never raised in the current implementation.
· NX_destinationInvalid = 11010

This exception is raised in two cases. If there are errors in accessing an
internal buffer for the connection for either encoding or decoding, the
exception is raised with the message ªtarget not reachable.º

When a msg_send() fails with the error SEND_INVALID_PORT, the exception is
also raised with the message ªdestination invalid.º
· NX_originatorInvalid = 11011

If either msg_receive() or msg_rpc() fails and the returned error is
RCV_INVALID_PORT, this exception is raised with the message ªbad origination.º
When diagnostic messages are enabled, either the message
ª®nishEncoding: send/receive error <mach error number>:<mach error
string>º or ªstartDecoding: receive error <mach error number>:<mach error
string>º is printed to the console.
· NX_sendTimedOut = 11012

If either msg_send() or msg_rpc() fails and the returned error is
SEND_TIMED_OUT, this exception is raised with the message ªsend timed out.º
When diagnostic messages are enabled, the message ª®nishEncoding:
send/receive error <mach error number>:<mach error string>º is printed to the
console. This can be related to network delays or a receiver that is not running
its connection.

n
· NX_receiveTimedOut = 11013

If either msg_receive() or msg_rpc() fails and the returned error is
RCV_TIMED_OUT, this exception is raised with the message ªreceive timed
out.º When diagnostic messages are enabled, either the message
ª®nishEncoding: send/receive error <mach error number>:<mach error
string>º or ªstartDecoding: receive error <mach error number>:<mach error
string>º is printed to the console. This can be related to network delays. Another
possibility is a client that is not prepared to receive unsolicited messages from its
server. Please refer to the ªReceiving Unsolicited Messages from the Server
(Running Clients)º section in our previous article.
The application must prepare for inevitable failures by determining the
appropriate action for timeouts and other exceptions.

Minimal Declarations
The code fragment is also not ef®cient because it is passing a large data set as
an argument. Network bandwidth is a ®nite resource to be used with care. The
return value and arguments for
a remote message need to be examined to minimize the amount of data moving
back and forth across the network connection. As we learned earlier, there is also
a related limitation in the current implementation of the Network Message Server

that is responsible for forwarding Mach messages between machines on the
network.
Some design decisions cannot be reached without a prototype. For example, how
many clients
can be managed by one server? In part, this depends on how long it takes the
server to process a request. Another consideration is the frequency of requests.
Will the requests occur at constant intervals or in sporadic bursts? Happy
thoughts, such as ªIt would be jolly if the server supported 100 clients,º are not a
replacement for a prototype.

Objective-C Protocol Specification
The messages between the client and server should be speci®ed as an
Objective-C protocol.
The protocol will de®ne the return value and the data types for the arguments in
the message. Quali®ers are also de®ned for remote messages, allowing
applications to be precise regarding data movement across the connection.
Arguments can be quali®ed as in, out, or inout. The bycopy quali®er hints at
whether an object argument or return value is copied across the connection,
rather than passed by proxy. The oneway quali®er indicates that there is no valid
return value for
the message.

Using Protocols for Efficiency

Besides good design practice, there is another excellent reason to de®ne
protocols. They will reduce message traf®c between your client and server. In
many cases that we reviewed, we discovered that customers have disregarded

or are unfamiliar with the sage advice found in
/GeneralRef/06_DistributedObjects/IntroDistObjects.rtf:

A message sent to a remote object through a proxy may require two round-trip
messages. The ®rst round trip is a request to the real object for its method
signature, which speci®es the types the method requires as arguments. This
enables the proxy to encode the data that it has been passed and forward it to
the real object. Note that a method signature is not cached; without the use
of protocols, it will need to be fetched for every message.

Actually, the documentation is imprecise. As we indicated earlier, the method
signature is fetched once and then cached in the proxy. Nonetheless, ensure that
a protocol is de®ned for communication between the client and server by using
the setProtocolForProxy: method in NXProxy. The following example illustrates
how a client sets the protocol for its proxy to the root (server) object:
@protocol ServerMethods
- setValue:(in struct value *)aValue;
- getValue:(out struct value *)aValue;
- setAndGetValue:(inout struct value *)aValue;
@end

@interface ServerClass:Object <ServerMethods>
@end

id proxyToServer;
proxyToServer = [NXConnection connectToName:SERVER_NAME onHost:HOST_NAME];

if (proxyToServer){
 [server setProtocolForProxy:@protocol(ServerMethods)];
}

There is no interface to query an NXProxy instance for its protocol. Furthermore,
the setProtocolForProxy: method should be executed once for a proxy. Multiple
invocations will replace the current protocol with the new protocol.

in, out, inout Qualifiers

When a remote message includes pointer arguments, it is unclear whether the
argument is sending data to the server, returning data from the server, or both.
The in quali®er means that the pointer is sending data to the server. The run
time must dereference the pointer to access its value. The value is sent across
the connection. On the server, the run time then allocates space and stores the
value, passing the local address to the server.
- setValue:(in struct value *)aValue;

The out quali®er indicates that the pointer is returning data from the server. The
value that the pointer references does not need to be sent across the
connection. Instead, a value from the server is returned across the connection
and stored in the address referenced by the pointer on the client.
- getValue:(out struct value *)aValue;

The inout quali®er indicates that the pointer both sends and returns data. If
unspeci®ed, the default quali®er for pointer arguments is inout, except when
const is also declared. A const pointer uses in as the default.
- getAndSetValue: (inout struct value *)aValue;

To review additional constraints, please see ªObjective-C Extensionsº in
/Concepts/ObjectiveC/3_MoreObjC/MoreObjC.rtfd.

oneway Qualifier

Another important consideration is whether a remote message needs to return
values. If the request is asynchronous, the client sends the request, pauses until
the request is queued on the Mach inPort for the server connection, and then
continues its operation. It does not wait for the server to process the request.
This style of request operation can be indicated using the oneway quali®er in the
protocol declaration:
-(oneway void) noResponseNeeded;

Often, developers are surprised if a client blocks while sending a oneway request
to a server. Requests are encapsulated into Mach messages. As we noted in our
previous article:

When a process sends a message to a remote port, the message is queued
until it is received

by another process. If the queue is full, the send operation blocks until space
is available to enqueue the new message. The sending process can choose to
wait in®nitely or allow the operation to time out after a speci®ed period.
It's possible for the client to receive a timeout exception while waiting for the
oneway request to be queued.
A message that returns values is referred to as a synchronous request. The client
sends the request and waits for the server to process the request and return a
response.

bycopy Qualifier

As we discussed earlier, the bycopy quali®er is speci®ed in the protocol

declaration to indicate whether a copy of an object, not a proxy, is intended to be
passed as an argument or returned.
-(bycopy id) remoteMessage:(bycopy in id)anObject;

DEBUGGING DISTRIBUTED APPLICATIONS
Debugging distributed applications can be dif®cult because the timing of many
messages is critical. Interrupting the ¯ow of messages in the debugger might
cause timeout exceptions to occur, concealing or masking other problems. One
solution is to set in®nite timeouts on the connection using methods such as
SetDefaultTimeout:, setInTimeout:, or setOutTimeout:.
The timeout can be set to -1 for an in®nite timeout, allowing unlimited time in
the debugger analyzing the application. This approach is inappropriate for
production applications, because the in®nite timeout might cause the process to
block inde®nitely if there's a problem sending or receiving messages. We
recommend the following convention:
#ifdef DEBUG
#warning infinite timeouts enabled for debugging

[serverConnection setDefaultTimeout:-1];
#else DEBUG

// set timeouts to acceptable values for production application
#endif DEBUG

Debugging and Diagnostic Messages
The debug: class method in NXConnection is another valuable debugging aid.
This method is undocumented and private, but we share it with our friends. It

can reveal valuable information during the debugging process when used
judiciously. A prototype for the method needs to be declared:
@interface NXConnection (Debug)
+ (void)debug:(const char *)header;
@end

The header argument is a string that will precede each line printed by (P)DO.
This makes it easier to identify the source of the diagnostic messages. For
example, if both a client and a server are being debugged, both applications
would execute debug: but would provide different values for header, such as
ªclientº or ªserver.º
Here's some example output. When the server is ®rst run, it produces:
server[t:377136]adding conn 5cb00 with inPortals 5c9e8 (2560) outPortal 0 (0)

root 0
server[t:377136]setting root 5c078 on connection 5cb00

We see the connection is created and registered. The client then connects to the
server:
client[t:360752]adding conn 5a4b8 with inPortals 58360 (3072) outPortal 5a3e0

(2816) root 0
client[t:360752]new isRemote proxy 5a640 for 0 on conn 5a4b8

The last line indicates the proxy to the server's root object is being created in the
client. The client then sends a message containing an object being encoded
bycopy:
client[t:360752]entered forward:: [0x0 send:...]
client[t:360752]methodSignature for send:

client[t:360752]encodeMethodParams:onto: type=Vv12@0:4O@8 nargs 3
client[t:360752]encodeMethodParams:onto: type=O@8 value=0x58cd0
client[t:360752]encodeObjectBycopy: 58cd0 (Foo1)

The message is sent to the proxy, which invokes its forward:: implementation.
The method is encoded into its method signature, and then (P)DO prepares to
encode the object parameter bycopy.
client[t:360752]encodeObject: 83fc (NXConstantString)
client[t:360752]encodeObject: 588d0 (NSintNumber)
client[t:360752]in forward:: - made packet [5a600 (name 0) send:...] conn:5a478
client[t:360752]®nishEncoding: 87 chars 9 ints 0 ports 0 oolds
client[t:360752]msg_sending on 2816

We're sending an object with two instance variables, including one NSString and
one NSNumber. We see their concrete classes being encoded, and then the
encoding is ®nished.
Over on the server, the message is received and decoded:
server[t:377136]new isLocal proxy 5f678 for 5c078 on conn 5f520
server[t:377136]adding conn 5f520 with inPortals 5c9e8 (2560) outPortal 5cb50

(4097) root 5c078
server[t:377136]startDecoding: 88 chars 9 ints 0 ports 0 oolds from 4097
server[t:377136]handleRequestOnPortal: [0x5c078 'send:']
server[t:377136]decodeMethodParamsFrom: type=@8 value=0x5f718

At this point in our example, the client exits. When it quits, the server is noti®ed
of the port death:
server[t:380216]NXConnection: 5f520 death noti®cation for port 5cb50 (4097)
server[t:377136]msg_receiving on 2560, timeout -1

If the server has any objects properly registered for invalidation noti®cation,
these objects would be noti®ed of this event.

Diagnostic Messages and Foundation Classes

Using the private debug: method has implications when encoding NSObjects by
copy over the connection. In this case, the NSObject subclass that is being
encoded needs to implement the +name method since NXConnection references
it when printing debugging messages.
NSObject doesn't normally implement +name but it can be done in a category,
like this:
@interface NSObject (NXConnectionDebugFix)
+ (const char *)name;
@end

@implementation NSObject (NXConnectionDebugFix)
+ (const char *)name
{

NSString *str = NSStringFromClass(self);
return [str cString];

}
@end

Memory Leaks
A few common mistakes cause memory leaks in DO applications. The most
common mistake is
to not free (char *) or (const char *) arguments to remote messages. Consider
the following fragment:

- (oneway void)processDone:(in const char *)processName
{

printf ("Process %s is done.\n", processName);

#ifndef LEAK
NX_FREE(processName);

#endif LEAK
}

The processName argument is a string being sent to the server. As described in
the ªin, out, and inout Quali®erº section, (P)DO must allocate space, store the
string value, and then pass the local address to the server. Space is allocated
with NX_MALLOC(). The application is responsible for freeing this memory with
NX_FREE(). If this method was invoked locally, the memory would not need to be
freed. This needs to be considered when a method is invoked both locally and
remotely.

This is also covered in the Distributed Objects Introduction documentation in
GeneralRef/06_DistributedObjects/IntroDistObjects.rtf.

A similar mistake is neglecting to free memory for strings allocated by (P)DO for
the decodeUsing: method. This is detailed above in the ªInitialization After
Decodingº section.
These memory leaks have a recognizable ªsignatureº within MallocDebug, which
looks like this:
Zone Address Size Function

default 0x0907de28 8 _NXDecodeChars, idecodeData,
-[NXMethodSignature decodeMethodParamsFrom:],
+[NXConnection handleRequestOnPortal:],
-[NXConnection runWithTimeout:], -[NXConnection run], main

default 0x0907d210 7 _NXDecodeChars, idecodeData,
-[NXPortPortal decodeData:ofType:],
-[NXMethodSignature decodeMethodParamsFrom:],
+[NXConnection handleRequestOnPortal:],
-[NXConnection runWithTimeout:], -[NXConnection run], main

WHO WERE THOSE MASKED MEN?
Your server is registered. Its client is connected. Messages are passing back and
forth. Your distributed applications are designed to minimize the number of
connections and remote message sends, while structured in such a way that
exceptions and errors are caught and dealt with gracefully. Cool. For the
moment, our work here is done. We're taking a sabbatical from the next issue of
the journal and waiting for those cards and letters to pour in.
Brian Raymor is a member of the Application Kit group. You can reach him by e-mail at
Brian_Raymor@next.com. Please feel free to send him comments and suggestions
regarding this article.

Randy Tidd specializes in DO, PDO, Foundation Kit, and EOF development. You can reach him
at randy@blacksmith.com.

The authors would like to thank Gordie Freedman, Alan Freier, Blaine Garst, and Eric Noyau for
reviewing
this article.

Next Article NeXTanswer #2041 A NEXTSTEP/OpenStep Interface to the SAP

R/3 System   
Table of contents http://www.next.com/HotNews/Journal/OSJ/SummerContents95.html

